Extensions 1→N→G→Q→1 with N=C2 and Q=C22×C5⋊C8

Direct product G=N×Q with N=C2 and Q=C22×C5⋊C8
dρLabelID
C23×C5⋊C8320C2^3xC5:C8320,1605


Non-split extensions G=N.Q with N=C2 and Q=C22×C5⋊C8
extensionφ:Q→Aut NdρLabelID
C2.1(C22×C5⋊C8) = C22×C5⋊C16central extension (φ=1)320C2.1(C2^2xC5:C8)320,1080
C2.2(C22×C5⋊C8) = C2×C4×C5⋊C8central extension (φ=1)320C2.2(C2^2xC5:C8)320,1084
C2.3(C22×C5⋊C8) = C2×C20.C8central stem extension (φ=1)160C2.3(C2^2xC5:C8)320,1081
C2.4(C22×C5⋊C8) = C2×C20⋊C8central stem extension (φ=1)320C2.4(C2^2xC5:C8)320,1085
C2.5(C22×C5⋊C8) = Dic5.12M4(2)central stem extension (φ=1)160C2.5(C2^2xC5:C8)320,1086
C2.6(C22×C5⋊C8) = D4×C5⋊C8central stem extension (φ=1)160C2.6(C2^2xC5:C8)320,1110
C2.7(C22×C5⋊C8) = Q8×C5⋊C8central stem extension (φ=1)320C2.7(C2^2xC5:C8)320,1124
C2.8(C22×C5⋊C8) = C5⋊C16.C22central stem extension (φ=1)1608C2.8(C2^2xC5:C8)320,1129
C2.9(C22×C5⋊C8) = C2×C23.2F5central stem extension (φ=1)160C2.9(C2^2xC5:C8)320,1135

׿
×
𝔽